| | | | | | | F | REVISI | ONS | | | | | | | | | | | |---|---|--------------------------------|------------------------------|------------------------|-------------------|----------------|------------------|----------------------|------------------|------------|-----------------------|--------------------|------------|---------------------|----------------------|-------------------|-------|---| | LTR | | | | DESCR | RIPTIO | ٧ | | | | | DATE (YR-MO-DA) | | | APPROVED | | |) | | | А | Add a device clas | s V devi | ce. M | ake cha | anges t | o table | II and a | add tab | le IIB. | | 96-11-19 | | | | R. M | ONNIN | I | | | В | Add case outlines | H and > | X. Mal | ke chan | iges to | 1.2.4, ′ | 1.3, and | d FIGU | RE 1. | | 97-06-13 | | R. MONNIN | | | I | | | | С | Change case outline X dimensions L, R, and R1 for FIGURE 1. | | | | 1 I | gt | | | 97-1 | 1-25 | | R. MONNIN | | I | | | | | | D | Change values for thermal resistance under the absolute max Change footnote 1 for table I. Change test conditions for Slev table I. – Igt | | | | aximum
ew rate | ratings | S. | | 98-0 | 9-22 | | R. MONNIN | | | | | | | | E | Add radiation hard | dened re | equiren | ments. | - ro | | | | | | | 00-0 | 3-15 | | R. MONNIN | | | l | | F | Change the maxir circuit. – rrp | num tota | al dose | e availa | ble valu | ue in 1. | 5. Ren | nove ra | diation | test | | 00-0 | 8-18 | | R. MONNIN | | | | | G | Delete figure 1 an | d update | e draw | ing to r | eflect c | urrent ı | equire | ments. | - ro | | | 03-0 | 2-26 | | | R. M | ONNIN | I | | Н | Add device type 0
2/ as specified un
Delete the Accele | der Tabl | le I. M | lake a c | hange | ake chato para | anges t
graph | to footn
4.4.4.1. | otes <u>1</u> / | and | | 09-0 | 3-10 | | | R. H | IEBER | | | THE ORIGINAL REV SHEET REV SHEET | L FIRST SHEET OF | THIS DE | RAWIN | NG HAS | BEEN | REPL | ACED. | | | | | | | | | | | | | REV STATUS | | REV | <i>'</i> | | Н | Н | ACED. | Н | Н | Н | Н | Н | Н | Н | Н | Н | | | | REV STATUS
OF SHEETS | | REW | | | H 1 | H 2 | | | H 5 | H 6 | H 7 | H 8 | H 9 | H 10 | H 11 | H 12 | | | | OF SHEETS PMIC N/A STA MICRO | NDARD
DCIRCUIT
AWING | SHE
PREI
RIC | ET PAREI K OFF | FICER | 1 | | Н | Н | 5 | 6
EFEN | 7
SE SI | 8
UPPL
IBUS, | 9
Y CE | | 11
R COL
218-3 | 12
-UMB | sus | | | OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA AND AGE | NDARD
DCIRCUIT | SHE PREI RIC CHEE RA. APPF MIC | PAREI CKED CKED JESH I ROVEI | BY PITHAL D BY . FRYE | 1
DIA | 2 | Н | H
4 | DI
DI
CROC | EFEN
CC | SE SI
DLUM
http | BUPPLIBUS, :://ww | y CE, OHIO | 10
NTER
O 432 | 218-3:
a.mil | 12
LUMB
990 | НGН | | ### 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following example: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|--| | 01 | LM7171 | High speed, high output current, voltage feedback amplifier | | 02 | LM7171 | High speed, high output current,
voltage feedback amplifier and not
sensitive at low dose rate | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: | Device class | Device requirements documentation | |--------------|---| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|-------------------------------| | Н | GDFP1-F10 or CDFP2-F10 | 10 | Flat pack | | Р | GDIP1-T8 or CDIP2-T8 | 8 | Dual-in-line | | Χ | GDFP1-G10 | 10 | Flat pack with gullwing leads | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 2 | # 1.3 Absolute maximum ratings. 1/ 1 1 | Supply voltage (+V _S to -V _S) Differential input voltage Output short circuit to ground Storage temperature range | $\pm 10 \text{ V}$ $\underline{2}$ / Continuous $\underline{3}$ / | |---|---| | Power dissipation (PD) | | | Lead temperature (soldering, 10 seconds) | +260°C | | Junction temperature (T _J) | +150°C | | Thermal resistance, junction-to-case (θ_{JC}): | | | Cases H and X | 5°C/W | | Case P | 3°C/W | | Thermal resistance, junction-to-ambient (θ_{JA}): | | | Cases H and X Case P | 105°C/W at 500 linear feet per minute | | 1.4 Recommended operating conditions. | · | | Supply voltage | 5.5 V to 36 V | | Ambient operating temperature range (T _A) | | | 1.5 Radiation features: 4/5/ | | | Device type 01: | | Maximum total dose available (dose rate = 50 - 300 rads (Si)/s)........ ≥300 Krads (Si) Maximum total dose available (dose rate = 10 mrads (Si)/s) ≥300 Krads (Si) The manufacturer supplying RHA device 02 parts on this drawing has completed Lot Acceptance testing at Low Dose Rate (10 mrad/s) on these RHA marked parts. The Low Dose Rate (LDR) testing that was performed demonstrates that these parts from the lot tested do not have an Enhanced Low Dose rate Sensitivity as defined by Method 1019. Lot Acceptance Testing at LDR will continue to be performed on each wafer. Since the redesigned part did not demonstrate ELDRS per Method 1019 and the previously tested device type 01 was not tested for ELDRS, device type 02 will be added to distinguish it from the 01 device. ^{5/} For device type 02, these parts have been tested and do not demonstrate low dose rate sensitivity. Radiation end point limits for the noted parameters are guaranteed for the conditions specified in MIL-STD-883, test method 1019, condition D. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 3 | ^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ^{2/} Input differential voltage is measured at $V_S = \pm 15 \text{ V}$. ^{3/} Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed T_J of +150°C. ^{4/} For device type 01, these parts may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A. ### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. #### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. ### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 4 | # TABLE I. <u>Electrical performance characteristics</u>. | Test | Symbol | Conditions $\underline{1}/\underline{2}/\underline{3}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | Group A subgroups | Device
type | Lir | nits | Unit | | |-----------------------------|-----------------|--|-------------------|----------------|-----|-------|------|--| | | | arriode earlorwide openined | January. | 1,750 | Min | Max | - | | | ±5 V section | - | , | | • | | | • | | | Input offset voltage | Vos | | 1 | 01, 02 | | 1.5 | mV | | | | | | 2,3 | | | 7 | | | | Input bias current | I _{IB} | | 1 | 01, 02 | | 10 | μА | | | | | | 2,3 | | | 12 | | | | Input offset current | los | | 1 | 01, 02 | | 4 | μА | | | | | | 2,3 | | | 6 | | | | Common mode rejection ratio | CMRR | V _{CM} = ±2.5 V | 1 | 01, 02 | 80 | | dB | | | | | | 2,3 | | 70 | | | | | Large signal voltage gain | A _V | $R_L = 1 \text{ k}\Omega \underline{4}/$ | 1 | 01, 02 | 75 | | dB | | | | | | 2,3 | | 70 | | | | | | | R _L = 100 Ω <u>4</u> / | 1 | | 72 | | | | | | | | 2,3 | | 67 | | | | | Output voltage swing | Vout | R _L = 1 kΩ | 1 | 01, 02 | 3.2 | -3.2 | ٧ | | | | | | 2,3 | | 3.0 | -3.0 | | | | | | R _L = 100 Ω | 1 | | 2.9 | -2.9 | | | | | | | 2,3 | | 2.8 | -2.75 | | | | Output current | lout | Sourcing, $R_L = 100 \Omega \ \underline{5}/$ | 1 | 01, 02 | 29 | | mA | | | | | | 2,3 | | 28 | | | | | | | Sinking, $R_L = 100 \Omega \frac{5}{}$ | 1 | | | 29 | | | | | | | 2,3 | | | 27.5 | | | | Supply current | Icc | | 1 | 01, 02 | | 8 | mA | | | | | | 2,3 | | | 9 | | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 5 | TABLE I. <u>Electrical performance characteristics</u> – Continued. | Test | Symbol | Conditions $\underline{1}/\underline{2}/\underline{3}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | Group A subgroups | Device
type | Lir | nits | Unit | | |------------------------------|------------------|--|-------------------|----------------|------|-------|------|--| | | | | | | Min | Max | | | | ±15 V section | T | T | | 1 | | | | | | Input offset voltage | Vos | | 1 | 01, 02 | | 1 | mV | | | | | | 2,3 | | | 7 | | | | Input bias current | I _{IB} | | 1 | 01, 02 | | 10 | μА | | | | | | 2,3 | | | 12 | | | | Input offset current | los | | 1 | 01, 02 | | 4 | μА | | | | | | 2,3 | | | 6 | | | | Common mode rejection ratio | CMRR | V _{CM} = ±10 V | 1 | 01, 02 | 85 | | dB | | | | | | 2,3 | | 70 | | | | | Power supply rejection ratio | PSRR | V _S = ±15 V to ±5 V | 1 | 01, 02 | 85 | | dB | | | | | | 2,3 | | 80 | | | | | Large signal voltage gain | A _V | $R_L = 1 \text{ k}\Omega \underline{4}$ | 1 | 01, 02 | 80 | | dB | | | | | | 2,3 | | 75 | | | | | | | R _L = 100 Ω <u>4</u> / | 1 | | 75 | | | | | | | | 2,3 | | 70 | | | | | Output voltage swing | Vout | R _L = 1 kΩ | 1 | 01, 02 | 13 | -13 | V | | | | | | 2,3 | | 12.7 | -12.7 | | | | | | R _L = 100 Ω | 1 | | 10.5 | -9.5 | | | | | | | 2,3 | | 9.5 | -9 | | | | Output current, open loop | I _{OUT} | Sourcing, $R_L = 100 \Omega \frac{5}{}$ | 1 | 01, 02 | 105 | | mA | | | | | | 2,3 | | 95 | | | | | | | Sinking, $R_L = 100 \Omega \frac{5}{}$ | 1 | | | 95 | | | | | | | 2,3 | | | 90 | | | See footnotes at end of table. | STANDARD | SIZE | |---|----------| | MICROCIRCUIT DRAWING | A | | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | | SIZE
A | | 5962-95536 | | |------------------|---------------------|------------|--| | | REVISION LEVEL
H | SHEET 6 | | TABLE I. <u>Electrical performance characteristics</u> – Continued. | Test | Symbol | Conditions $\underline{1}/\underline{2}/\underline{3}/$
-55°C \leq T _A \leq +125°C
unless otherwise specified | Group A subgroups | Device
type | Lir | mits | Unit | |--|--------|--|-------------------|----------------|------|------|------| | | | | | | Min | Max | | | $\pm 15 \text{ V}$ section - continued | | | | | | | | | Supply current | Icc | | 1 | 01, 02 | | 8.5 | mA | | | | | 2,3 | | | 9.5 | | | Slew rate | SR | $A_V = 2$, $V_{IN} = \pm 2.5$ V, $\underline{6}/$ rise and fall time = 3 ns, | 4 | 01, 02 | 2000 | | V/μs | | | | T _A = +25°C | | | | | | | Unity gain bandwidth | UGBW | | 4 | 01, 02 | 170 | | MHz | - 1/ RHA devices supplied to this drawing have been characterized through all levels M, D, P, L, R, F of irradiation. Pre and Post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. - 2/ The 01 device may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, method 1019, condition A for device type 01. Device type 02, has been tested at low dose rate and does not demonstrate low dose rate sensitivity (see 1.5 herein). - $\underline{3}$ / Unless otherwise specified V_{CM} = 0 V and R_L > 1 M Ω for subgroups 1, 2, 3 only. V_{CM} = 0 V for subgroup 4. For the ± 5 V section tests, +V_S = +5 V and -V_S = -5 V. For the ± 15 V section tests, +V_S = +15 V and -V_S = -15 V. - $\underline{4}$ / Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. For the ± 5 V section tests, V_{OUT} = ± 1 V. For the ± 15 V section tests, V_{OUT} = ± 5 V. - $\underline{5}$ / The open loop output current is guaranteed by the measurement of the open loop output voltage swing, using 100 Ω output load. - 6/ The slew rate is measured between ± 4 V. | STANDARD | |----------------------| | MICROCIRCUIT DRAWING | DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95536 | |------------------|---------------------|------------| | | REVISION LEVEL
H | SHEET 7 | | Device types | 01 and 02 | | | |-----------------|-----------------|-----------------|--| | Case outlines | H and X | Р | | | Terminal number | Terminal number | | | | 1 | NC | NC | | | 2 | -INPUT | -INPUT | | | 3 | NC | +INPUT | | | 4 | +INPUT | -V _S | | | 5 | -V _S | NC | | | 6 | NC | OUTPUT | | | 7 | OUTPUT | +V _S | | | 8 | NC | NC | | | 9 | +V _S | | | | 10 | NC | | | NC = No connection FIGURE 1. Terminal connections. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | H | 8 | - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing. - 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 49 (see MIL-PRF-38535, appendix A). #### 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table IIA herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table IIA herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 9 | TABLE IIA. Electrical test requirements. | Test requirements | Subgroups (in accordance with MIL-STD-883, method 5005, table I) | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |---|--|---|-------------------------------| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | | | Final electrical parameters (see 4.2) | 1,2,3,4 <u>1</u> / | 1,2,3,4 <u>1</u> / | 1,2,3,4 <u>1</u> / <u>2</u> / | | Group A test requirements (see 4.4) | 1,2,3,4 | 1,2,3,4 | 1,2,3,4 | | Group C end-point electrical parameters (see 4.4) | 1,2,3 | 1,2,3 | 1,2,3 <u>2</u> / | | Group D end-point electrical parameters (see 4.4) | 1,2,3 | 1,2,3 | 1,2,3 | | Group E end-point electrical parameters (see 4.4) | | 1 | 1 | ^{1/} PDA applies to subgroup 1. TABLE IIB. Delta electrical characteristics (+25°C). | Parameters | Symbol 1/ | Delta limits | |-----------------------------|------------------|--------------| | Input offset voltage | V _{IO} | ±250 μV | | Positive input bias current | +I _{IB} | ±500 nA | | Negative input bias current | -I _{IB} | ±500 nA | ^{1/} All delta parameters are tested at ± 5 V and ± 15 V. - 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4.1 Group A inspection. - a. Tests shall be as specified in table IIA herein. - b. Subgroups 5, 6, 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
H | SHEET 10 | ^{2/} Delta limits as specified in table IIB shall be required where specified and the delta limits shall be computed with reference to the previous endpoint parameters. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - b. $T_A = +125^{\circ}C$, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table IIA herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at TA = +25°C ±5°C, after exposure, to the subgroups specified in table IIA herein. - 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A for device type 01, condition D for device type 02 and as specified herein. - 4.4.4.2 <u>Dose rate burnout</u>. When required by the customer, test shall be performed on devices, standard evaluation circuit (SEC), or approved test structures at technology qualifications and after any design or process changes which may effect the RHA capability of the process. Dose rate burnout shall be performed in accordance with test method 1023 of MIL-STD-883 and as specified herein. # 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. # 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-95536 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | H | 11 | - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. | STANDARD | |----------------------| | MICROCIRCUIT DRAWING | DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-95536 | |------------------|---------------------|------------| | | REVISION LEVEL
H | SHEET 12 | # STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 09-03-10 Approved sources of supply for SMD 5962-95536 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-9553601QHA | <u>3</u> / | LM7171AMW-QML | | 5962-9553601QPA | 27014 | LM7171AMJ-QML | | 5962-9553601QXA | 27014 | LM7171AMWG-QML | | 5962-9553601VHA | <u>3</u> / | LM7171AMW-QMLV | | 5962-9553601VPA | <u>3</u> / | LM7171AMJ-QMLV | | 5962-9553601VXA | <u>3</u> / | LM7171AMWG-QMLV | | 5962F9553601QPA | <u>3</u> / | LM7171AMJFQML | | 5962F9553601QXA | <u>3</u> / | LM7171AMWGFQML | | 5962F9553601VHA | 27014 | LM7171AMWFQMLV | | 5962F9553601VPA | 27014 | LM7171AMJFQMLV | | 5962F9553601VXA | 27014 | LM7171AMWGFQMLV | | 5962F9553602VHA | 27014 | LM7171AMWFLQMLV | | 5962F9553602VXA | 27014 | LM7171AMWGFLQV | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. - <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ Not available from an approved source of supply. Vendor CAGE number Vendor name and address 27014 National Semiconductor 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.